Automated Detection Method for Clustered Microcalcification in Mammogram Image Based on Statistical Textural Features

نویسندگان

  • Kohei Arai
  • Indra Nugraha Abdullah
  • Hiroshi Okumura
چکیده

Breast cancer is the most frightening cancer for women in the world. The current problem that closely related with this issue is how to deal with small calcification part inside the breast called micro calcification (MC). As a preventive way, a breast screening examination called mammogram is provided. Mammogram image with a considerable amount of MC has been a problem for the doctor and radiologist when they should determine correctly the region of interest, in this study is clustered MC. Therefore, we propose to develop an automated method to detect clustered MC utilizing two main methods, multi-branch standard deviation analysis for clustered MC detection and surrounding region dependence method for individual MC detection. Our proposed method was resulting in 70.8% of classification rate, then for the sensitivity and specificity obtained 79% and 87%, respectively. The gained results are adequately promising to be more developed in some areas. KeywordsAutomated Detection Method; Mammogram; Micro calcification; Statistical Textural Features; Standard Deviation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Evolutionary Approach to Detect Microcalcifications in Mammogram Image

This paper describes a new approach for detection of Microcalcification using Evolutionary algorithms. The proposed system consists of two steps: First, the mammogram images are enhanced using median filter, normalized the image, pectoral muscle region is removed and the border of the mammogram is detected for both left and right images. Second, using the border points and nipple position as th...

متن کامل

Detection of Microcalcification in Digital Mammograms Using One Dimensional Wavelet Transform

Mammography is the most efficient method for breast cancer early detection. Clusters of microcalcifications are the early sign of breast cancer and their detection is the key to improve prognosis of breast cancer. Microcalcifications appear in mammogram image as tiny localized granular points, which is often difficult to detect by naked eye because of their small size. Automatic and accurately ...

متن کامل

Bayesian Classifier with Simplified Learning Phase for Detecting Microcalcifications in Digital Mammograms

Detection of clustered microcalcifications (MCs) in mammograms represents a significant step towards successful detection of breast cancer since their existence is one of the early signs of cancer. In this paper, a new framework that integrates Bayesian classifier and a pattern synthesizing scheme for detecting microcalcification clusters is proposed. This proposed work extracts textural, spect...

متن کامل

Detection of Microcalcification in Mammogram Images using Support Vector Machine based Classifier

Breast cancer is one of the most frequently occurring disease which leads even to death among women community. The appearance of micro-calcifications in mammograms is an early sign of breast cancer. To overcome the issue, automated micro-calcification detection techniques play a vital role in cancer diagnosis and treatment. In this paper we proposed Support Vector Machine (SVM) based classifier...

متن کامل

A Computer Aided Diagnosis System for Microcalcification Cluster Detection in Digital Mammogram

Mammography is the most efficient method for breast cancer early detection. Clusters of microcalcifications are the sign of breast cancer and their early detection is the key to improve breast cancer prognosis. Microcalcifications appear in mammogram as tiny granular points, which are difficult to observe by radiologists due to their small size. An efficient method for automatic and accurate de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012